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Stratilied spin-up, the process of adjustment of a uniformly rotating stratified 
fluid to an abrupt change in the rotation of the container, is important in many 
geophysical contexts. An experimental study of this process is presented here 
for the case where a linearly stratified salt solution is enclosed in a cylindrical 
container whose rotation rate is changed by a small amount. Results are pre- 
sented for a limited range of values of B, the internal E’roude number, which 
measures the ratio of the frequencies due to buoyancy and rotation. The experi- 
mental study is augmented by a theoretical treatment of idealized models which 
clarify the more fundamental physical processes that occur. The response of a 
stratified fluid is faster than that of a homogeneous fluid but the adjustment is 
limited to layers near the bottom and top boundaries the thickness of which is 
determined by the value of B. A comparison of the experimental results with the 
theories of Holton, Walin and Sakurai is also made and it is shown that for 
the present physical arrangement (insulated side walls) the theories of the latter 
two authors agree much more closely with experiment than does the theory of 
Holton. However, all three theories tend to over-estimate the azimuthal dis- 
placement in the regions near the upper and lower boundaries where the spin-up 
is most rapid. The Sweet-Eddington circulation, which accompanies the ideal 
state of rigid-body rotation, can be significant under normal laboratory con- 
ditions and it was necessary to correct some of the spin-up results for this effect. 
The circulation in the vertical plane is described qualitatively. 

1. Introduction, summary and conclusions 
The process of adjustment of a rotating fluid to an imposed change in the 

rotation rate is important for understanding transient geophysical flows. A 
simple model for the study of the flow associated with such a change has been 
presented by Greenspan & Howard (1963). In  their study the uniform rotation 
rate of a right cylindrical container of homogeneous fluid was increased abruptly 
to a slightly different value. They analyzed the response of the fluid to this 
change and called the adjustment process the spin-up of the fluid. The present 
paper reports an experimental study of the spin-up of a stratified fluid and an 
explanation of the flow in terms of simple analytic models. 
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Although Greenspan & Howard presented the first thorough analysis of the 
adjustment process, experiments in which the rotation of the container was 
abruptly changed from zero to some finite value had been performed many years 
earlier by Ekman (1906). By comparing the responses of homogeneous and stably 
stratified fluids he hoped to measure the effect of stratification on the diffusion 
of momentum from the boundary regions into the interior of the fluid. 

Ekman suspended a light aluminium vane at  the mid-level of the fluid in each 
case and measured the rate at which vorticity was transferred from the Ekman 
layer (as we now call it) to the level at  which the vane was located. He concluded 
that stratification served to inhibit the penetration of boundary effects. To sup- 
port his experimental findings he included an analysis of diffusion of momentum 
from the bottom boundary upward and described the difference between the 
results for the homogeneous and stratified cases in terms of different effective 
diffusion coefficients. He was evidently unaware of the secondary circulation 
which we now term the spin-up process. 

Some years later Pettersson (1931)t repeated Ekman’s experiments and made 
more careful and detailed observations of the induced flow in the interior regions 
of the fluid. He concluded that Ekman’s findings were correct, i.e. the stratifica- 
tion inhibited the upward transfer of momentum. However, he also observed the 
secondary spin-up circulation and realized that the upward transfer of momen- 
tum was due to this circulation rather than to the vertical diffusion of momentum. 
Although Pettersson sketched a somewhat inaccurate picture of the secondary 
circulation (the fluid was thrown outward near the bottom boundary, flowed 
upward near the side wall, turned horizontally inward and eventualIy was sucked 
down into the bottom boundary layer via a narrow column near the centre), 
he had a pretty clear picture of the manner in which the rotation was transmitted 
to the main body of the fluid. A quotation from his paper follows: “From the 
experiments here described we may infer, that turbulence probably has very 
little to do with the great increase in p experienced, when the water in the 
rotating cylinder is changed from a stratified to a homogeneous condition. In- 
stead of a transmission of momentum upwards by friction, as at  a strictly laminar 
motion, we have, in the latter case, a transport of momentum, not by small 
vortices but by a vertical circulation passing through the whole of the rotating 
water-column. The effect is somewhat analogous to what happens at  an experi- 
ment, in which the heat-conductivity of a liquid is to be determined, but where 
convection currents are not completely excluded. 

“This result is much to be regretted, since it seems to close an apparently very 
promising and simple way for studying in the laboratory, how turbulence is 
generated and how it is influenced by the vicinity to boundaries, absolute as well 
as relative, if by the latter expression to transition-layers between strata of 
different densities may be denoted.” 

Although Pettersson did not analyze his results quantitatively, he pointed out 
the correct qualitative nature of the process and he presented additional ex- 
perimental observations of such features as the instability which occurs after the 
initiation of spin-up in a two-layer fluid. 

t The existence of this paper was pointed out to us by Pierre Welander. 
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The spin-up of a stratified fluid differs from the corresponding process for a 
homogeneous fluid in some important respects. In  the first place, the word 
‘spin-up’ itself acquires a different meaning. When the fluid is homogeneous, the 
bulk of the fluid responds to a small change, AQ, in the rotation rate in a time of 
order E-4 Q-l, where E is the Ekman number (defined in Q 2) and Q- AQ and S2 
are the initial and h a 1  rotation rates of the fluid. Residual wave motions are 
eliminated after an interval which may be as long as that corresponding to the 
diffusion time (E-l Sz-l) for the fluid. If the latter are ignored, the spin-up time 
may be defined as the time required for the bulk of the fluid to rotate with angular 
velocity Q - e-lAQ. 

For a stratified fluid the process is considerably more complicated. At the 
initial instant all of the fluid rotates with the angular velocity Q - AQ. After a 
time interval of order E-* Q-l, the angular velocity of the fluid a t  each point 
levels off to a value given by i2 - aAQ, where a( < 1) is a function of radius and 
height. The spin-up time is defined here as the time required for a particle of fluid 
to rotate with angular velocity !J - e-laAQ. 

Diffusion effects will ultimately cause all the fluid to rotate with angular 
velocity Q;  i.e. significant changes in the angular velocity of the fluid particles 
will take place between the spin-up time and the diffusion time. 

Some investigators have interpreted spin-up time as the time required for all 
the fluid to achieve rigid-body rotation with angular velocity Q and for all of the 
residual wave motions to be dissipated. In  this case the spin-up time is the 
diffusion time even for homogeneous fluids. Others have defined the spin-up time 
as the time required for all of the fluid to rotate with angular velocity S2 - e-lAQ. 
Here, the spin-up time for a homogeneous fluid is as we have defined it above but 
for a stratified fluid some regions will not have been spun up before a diffusion 
time has elapsed. Still others have accepted the definitions that we have given 
above. For this situation the spin-up time for a stratified fluid can differ from 
point to point. Furthermore, as we shall see shortly, the spin-up time for a 
stratified fluid is shorter than that for a homogeneous fluid if the presently 
adopted definition is used. In any event, no confusion need arise as long as the 
particular interpretation of spin-up time is clearly given. 

In  the following section the Navier-Stokes equations for a stratxed fluid 
where the Boussinesq approximation is applicable are made dimensionless and 
the appropriate non-dimensional parameters are introduced. The model for 
stratified spin-up as derived by Walin (1969) and Sakurai (1969) is then stated 
and their solution is given. It is possible to obtain the qualitative character of the 
spin-up of the fluid by treating the idealized model of a horizontally infinite 
layer of fluid when spatially harmonic forcing is applied a t  the top and bottom 
boundaries uniformly in time for t > 0. It is easily shown in this case that pene- 
tration of boundary effects into the interior of the fluid is restricted to a layer of 
fluid whose thickness is determined by the stratification (the parameter B )  and 
by the scale (or the wave-number k) of the forcing at the boundary. When 
Blc + 1, only a limited penetration occurs and the spin-up time as defined above 
is considerably shorter than it is for a homogeneous fluid. When Bk < 1, the 
response is similar to that for a homogeneous fluid. A simple physical argument 
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for the spin-up process is presented and the reason for the decreased spin-up time 
in the stratified case is easily understood in terms of this model. 

A second horizontally inf?nite model, with the boundary forcing independent 
of one of the horizontal directions, is constructed to simulate the experimental 
situation. Here, boundary forcing is given as a zonal velocity uniform in the y 
direction but cyclic in the x direction (shown as the curve marked t = 0 in 
figure 2 (a)).  The sharp decrease in the zonal velocity profile near x = 1 is meant 
to simulate the effect of the diffusive processes near the side wall shortly after the 
initial instant in the experiment). The structure of the interior flow is shown to be 
consistent with the conclusions drawn from the situation with harmonic forcing. 
In  particular, when B = O(1) smaller-scale motions (k $ 1) penetrate less 
deeply into the fluid and they decay in a time much shorter than do the larger- 
scale motions. Consequently, as the spin-up process develops, the initially 
asymmetric response becomes smoothed and the interior flow has no sharp 
gradients. When B < 1 the response approaches that of a homogeneous fluid. 

After the description of the experimental apparatus and procedure in $4, 
an overall view of the experiments is presented in $ 5 .  First, we outline our 
observations of the relative Sweet-Eddington flow, i.e. the flow caused by 
diffusion in a fluid which is otherwise in a state of rigid-body rotation. With 
R 2 2 rad sec-l in our experiments the magnitude of the Sweet-Eddington 
flow is large enough to affect the spin-up circuIation. Hence, experiments with 
larger rotation rates were abandoned. Second, we describe the data used for 
obtaining the spin-up times at different points in the fluid. A discussion of the 
azimuthal displacement vs. radius is followed by our qualitative observations 
of the circulation pattern. The foregoing points are discussed in terms of the 
simple models introducedin $3.  

In  $6  a comparison between theory and experiment is given. Observations 
of displacement 8s. time a t  mid-level and mid-radius agree very well with Walin’s 
results and not so well with Holton’s. Similar observations made at  a level just 
outside the Ekman layer show a disparity between both theories and the ex- 
periments. The latter typically yield a smaller displacement than the theories do. 

Since the spin-up time is an integral measure of the response of the fluid, it 
provides a grosser comparison between theory and experiment than does the 
time-displacement data. Over the range of B explored here (0.4 < B < 1.4) 
Walin’s calculated spin-up times are in better agreement with experimentally 
determined times at  levels near the Ekman layer than at  mid-level. Holton’s 
spin-up times are everywhere too large. 

Curves of azimuthal displacement us. radius show that the best agreement 
between theory and experiment is obtained at mid-radius. Adding the correction 
due to side-wall diffusion to the theoretical results near the outer boundary im- 
proves the comparison there signxcantly . However, the theory generally 
overestimates the azimuthal displacement. 

From the foregoing we can conclude that the linear theoretical analyses which 
have been presented by Walin and Sakurai are in reasonably good agreement 
with experiments but yield small quantitative discrepancies. The disparity is 
greatest just outside the Ekmaii boundary layers and near the centre and the side 
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wall of the tank. Hence we must conclude that the theories describe the larger- 
scale response better than they do the smaller-scale response because the latter 
determines the behaviour in the regions of largest discrepancy. Since non-linear 
processes in the corner, where the flow turns into the interior from the Ekman 
layer, are small-scale phenomena, it appears likely that the discrepancy can be 
attributed to them. 

We can also conclude from this study that the solution presented by Walin and 
Sakurai is generally in better agreement with experiment than is Holton’s 
solution. As Sakurai has shown, Holton’s solution is not appropriate for the case 
where the side-wall boundary is non-conducting. Since the latter boundary 
condition applies to our experiments, it is perhaps not appropriate to  compare 
the results with Holton’s solution. However, Holton’s experiments also in- 
volved non-conducting boundaries and he claimed considerably better agreement 
between his theory and experiments than we were able to find between his 
theory and our experiments. 

The paper concludes with a section on the experimental difficulties which we 
encountered. The response of the turn-table to a change in the rotation rate, errors 
associated with the position of the dye, drag due to the wires, and other problems 
are present in the homogeneous spin-up experiments as well as in the stratified 
ones. Hence, spin-up experiments with a. homogeneous fluid are described and 
form a basis for comparison and determination of some of the experimental 
errors. Some of the problems specifically associated with the density gradients in 
the fluid round out the discussion. 

2. Equations of motion and the spin-up solution 
We start with the Navier-Stokes equations for a Boussinesq fluid in a rotating 

system and incorporate the centrifugal force terms into the pressure gradient. 
For solid-body rotationwe assume that surfaces of constant density are essentially 
parallel to the horizontal. With the Boussinesq approximation the conservation 
equation for the concentrations of the stabilizing solute can be written in terms 
of an effective density. Then the equations which determine the flow are 

v.v = 0) ( 2 . 2 )  

where pr is a (constant) reference density and p^ is the density perturbation which 
occurs as a result of the motion. The basic rotation, S2, and gravity are directed 
along the z axiswith unitvector i,. The termaplaz in (2.3)is the constant stabilizing 
gradient and will be written as 

where 8Ap is the amplitude of the density difference from bottom to top and 2L 
is the height of the container. 
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The equations are conveniently non-dimensionalized by the definitions 

where the primes denote non-dimensional quantities. If the scales for velocity 
and density fluctuation are related by 

g- Q V =  1, ““I Pr 

(2.1) and (2.3) take the form (dropping the primes)? 

av/at + EV . V v  -t 2 4  x v = - V p  - BpBi, + E V V ,  

apjat + c ~ .  vp - 2 ~ w  = pic) vzP, 
(2.7) 

(2.8) 

where the parameters are defined by 

Rossby number € = V/QL, 
Ekman number E = v/QL2, 
Prandtl number U = V / K ,  

ratio of Brunt-Vaisab to rotational frequencies 

The situation of interest is that in which the effect of rotation is dominant and 
the relative motions are small so that 

E < 1, s+O. (2.10) 

For a homogeneous fluid (Greenspan & Howard 1963) the spin-up time can be 
shown to be 0(E*) and a formal substitution of 

a/atf = ~ ~ a j a t  (2.11) 

simplifies the analysis for deducing the spin-up time. Information in a time scale 
of O(Q-l) is lost by the substitution (2.11) but this information has principally 
to do with inertial oscillations which are not important for the determination of 
the spin-up time. We make the same substitution in the stratified problem so 
that (2.7) and (2.8) become 

Et avpt + 2 4  x v = - V p  - 2Bpi, + EWV, (2.12) 

EB ap/at - 2Bw = (E /a )  V2p7 (2.13) 

where E has been set equal to  zero. 
From this point on, the analysis for spin-up in a right circular container with 

insulated boundaries can be developed along the lines given by Walin (1969) 
and Sakurai (1969). The variables are divided into interior and boundary-layer 

t The number 2 appears as a coefficient of the Coriolis, gravity and stability terms to 
preserve a certain symmetry and also for analytical convenience. 
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contributions, each set is expanded in powers of E* and use is made of Ekman 
boundary-layer theory, The lowest-order interior problem, consistent with the 
scaling and the boundary conditions, is expressed in terms of the zero-order 

(2.14) 
interior pressure field 

(2.15) 

a',/ar = 0 at r = a, (2.16) 

where I j o  = ap,/at and the velocity v in (2.15) is the total velocity which is known 
a t x =  T1. 

To satisfy the non-slip boundary condition at  the sides a Stewartson Ea 
boundary layer is appended near r = a. The equation for this layer (Pedlosky 

(2.17) 
1967) is 

avjiyat = a2vji)lap near r = a, 

where g = (a - r )  E-i and w@ is the contribution to wo of the E i  layer. 

1 
B 

vg', + a21jo/ax2 = 0, 

a'~ - f 2i,.0 x v F v g p ,  at x = f 1, 
B2 az 

The solution to this problem, as derived by Walin and Sakurai, is 

coshBm,z 
vo= - r + 2 a x  Jl(m,r) ( e 4 " n -  1) +aerfc (A), (2.18) 

hnJo(hn) COShBmn 

where the A, are the roots to J1 (A,) = 0, m, = A,/a and r, = (tanh Bm,)/Bm,. 
We have added the last term to take care of the non-slip condition. Although 
(2.18) represents the solution for our experimental situation, some insight can 
be gained by studying problems where lateral boundaries are absent and boun- 
dary conditions are imposed only along the bottom and the top. We turn our 
attention now to two simple cases. 

3. Two simple solutions 
The solution for a general distribution of horizontal velocities along bottom 

and top boundaries of infinite horizontal extent has been presented by Walin 
(1969). We shall look into the properties of two particular solutions of that 
general class because most of the results of the spin-up of fluid in a cylindrical 
container can be understood in terms of the behaviour of these two special flows. 
We first present the response of the fluid to simple harmonic forcing at  the top 
and bottom. This gives information about the spin-up time and the penetration 
into the fluid of the effects of the boundaries. The second case involves a forcing 
which simulates that of the experiment but again lateral walls are absent. This 
gives us a picture of the effect of an abrupt spatial variation in the forcing at the 
top and bottom boundaries. In both cases we compare the results for stratified 
and homogeneous flow. 

Harmonic forcing 

Consider the case where the fluid is confined between infinite plates at x = & 1 
and the boundary conditions on the velocities at  z = k 1 are 

u = - (Z/k) cos kx sin ly H(t) ,  
w = sin kx cos ZyH(t), 
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where H(t )  = {!> for t z  0. 

Initially the fluid is at rest in the rotating frame so that all dependent variables 
vanish for t < 0. Then (2.14) can be integrated with respect to time and we have 
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vgpo+ ( i / ~ 2 )  a2po/az2 = 0. (3.2) 

The problem defined by (3.2) together with the boundary conditions (2.15) and 
boundary velocities specified by (3.1) is straightforward and the solution for p o  is 

cosh BKz 
k cosh BK 

po  = 2-- cos kx cos Zy ( e +  - 1) H ( t ) ,  (3.3) 

where K2 = k2+12 and T = (tanh BK)/BK. (3.4) 

The pertinent information for our purposes is present even in the two-dimensional 
case (Z = 0, k = K). For this simple flow the remaining variables are 

and 

sinh R K z  
-coshBK 

cos Kx (,-€IT - l), 

cosh BKz 
'O = -coshBK 

sin Kx (e--t/T - l), 

Go = sin Kx sin g e-6 e-t/r, 

5,, = sin Kx cos g e-5 e-t/7, 

where [ = (1 - l z l )  E-*, and the tilde variables are in the Ekman layer. 
Hence, measured in units of Q--lE-*, the spin-up time for the present problem 

is given by (3.4). For every weak stratification (B < 1) we see from (3.4) that 
T+ 1. For very strong stratification (B  $ 1) the spin-up time tends toward 
(BK)-I. If the total wave-number K is either large or small, the interpretation of 
the results must be adjusted accordingly since T depends on the product BK. 

The spatial dependence of vo also reflects the very different response of the 
fluid for small and large values of BK. For BK < 1 the entire column of fluid 
responds to the velocities imposed at  the boundaries, whereas for BK & 1 the 
fluid in the immediate vicinity of the boundary is spun up in time 7- but fluid in 
the middle layers will feel the effect of the boundaries on a time scale determined 
by diffusion. 

The spin-up of the interior is brought about by the O(E*) circulation given by 
u1 and wl. The stream function corresponding to (ul, wl) is 

= - (sinh BKzlsinh BK) sin Kx e-+. (3.11) 

For K = 1 we plot the streamlines for B < 1 in figure 1 (a )  and B 9 1 in figure 1 (b ) .  
It is evident that for strong stratification the O(E4) circulation does not pene- 
trate very deeply into the interior and the fluid leaves or enters the boundary 
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layer at  a sharp angle to the horizontal. For very weak stratification the response 
is essentially that of a homogeneous fluid. 

The foregoing results can be described in terms of simple physical processes. 
Consider, for example, the response of a strongly stratified fluid near the bottom 
boundary in the region where the Ekman boundary layer sucks fluid from the 
interior. The required downward flow will carry fluid of lower density past a 
point just above the boundary layer so that the density at  that point will de- 
crease with time. Accordingly, because of hydrostatic balance the local vertical 
pressure gradient will increase with time. Suppose that at a short distance to the 
left the Ekman suction is greater. Then the corresponding vertical pressure 
gradient will show a larger increase with time. At the middle level of a vertically 

0 

-0.5 
z 

- 1.0 
0 )" R 0 t n  n 

FIGURE 1. Reduced stream function, @ = @&+'7, with harmonic forcing. 
(a) K = 1, B Q 1 (B  = 0). (b )  K = 1, B > 1 (B = 10). 

symmetric system the pressure is constant. Hence, the net result at  the level 
under consideration is a positive horizontal pressure gradient which increases 
with time, and, because of geostrophy, an acceleration normal to the horizontal 
pressure gradient will be generated. The Coriolis acceleration is balanced by a 
local acceleration, i.e. a flow to the left, which closes the vertical circulation 
pattern for the flow required by the Ekman motion conditions. This circulation 
continues until the redistribution of density and the associated geostrophic flow 
are compatible with the required values at the boundaries. The vertical circu- 
lation ceases and the fluid is then said to be spun up. 

It is now clear why stratification shortens the spin-up time and why the 
whole process is limited to a region near the boundary. For a given magnitude 
of Ekman suction the local rate of change of the density perturbation will be 
larger the larger the basic stratification. Hence, the associated pressure gradients 
and velocities will also be greater and the spin-up will occur faster. For the same 
reason the vertical pressure gradients which are established near the boundary 
will be more quickly relaxed by the generated cross flow and the effects of Ekman 
suction will penetrate less deeply into the fluid. The latter effect is reflected also 
in the sharp angles with which the streamlines in figure 1 ( b )  meet the boundary 
and in the generally flattened streamlines. 
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When the stratification is moderate (B  N 1) but the horizontal wavelength is 
small (K > I ) ,  the spin-up time and the depth of penetration of the boundary 
effects are limited just as they are for B B 1 and K N 1. Even though the 
magnitude of the cross flow is much smaller'than it is for B B 1, the horizontal 
distance over which the fluid must travel in order to re-establish the original 
stratification is much smaller and the net effect is the same as for B B 1, K N 1. 
A difference in detail for this case is that the O(E*) streamlines intersect the 
boundary just as they do in figure 1 (a).  In  fact, the general streamline pattern 
is identical to that of figure l(a) but the level z = 0 must now be placed at  a 
distance of O ( K )  above the boundary z = - 1. 

1 the fluid tends to respond as a homogeneous fluid. 
As we noted earlier, a particle leaves the bottom boundary layer of a stratified 
fluid, travels upward and horizontally and eventually turns downward again. 
If the horizontal scale is very large, the effect of the top boundary is felt by the 
fluid particle long before it is to turn down again and after that point the effect 
of stratification is no longer pertinent. Hence, if the forcing has a sufficiently 
large horizontal scale even a strongly stratified fluid will respond as a homo- 
geneous fluid. (This point is particularly pertinent for large-scale flows in the 
ocean.) 

For the case B N 1, K 

We note that in dimensional terms the spin-up time is 

tspin-up - - (tanhBK/BK) L/(vQ)t, (3.12) 

i.e. the spin-up time has a form indenticaI to that of the homogeneous system 
if we replace the vertical scale L by the stratification scale L, = L tanh BKIBK. 
For the case of BK & 1, As M L/BK and the spin-up time can be interpreted in 
terms of the homogeneous spin-up time if the Ekman number is defined in 
terms of the penetration depth instead of the total depth. Walin first pointed 
out this interpretation. 

In the discussion of the experimental results for the cylindrical problem it will 
help to keep in mind the following features of spin-up as suggested by the simple 
example presented above: (a)  When the fluid is spun up the azimuthal velocity 
of flnid close to the top and bottom boundaries will be the same as the imposed 
boundary velocities. Fluid near mid-depth will continue to move relative to the 
container until diffusion effects penetrate the interior. Hence, during spin-up the 
azimuthal displacement relative to the container will increase with distance 
from z = & 1. ( b )  When B $ 1 only a thin layer of fluid will achieve the boundary 
velocity when the spin-up process (as we have defined it) is complete. (c) The 
spin-up time is shorter the larger the value of B. 

Xipatially non-uniform forcing 

In  the spin-up of a stratified fluid contained in a right cylinder with horizontal 
boundaries at the top and bottom the difference in azimuthal velocity between 
the interior fluid and the top and bottom boundaries is linear in the radial co- 
ordinate at  the initial instant;. After a time of O(Q-l) the Ekman layers will 
have been more or less established and the fluid in the immediate vicinity of the 
lateral boundaries will have felt the influence of the side boundaries because of 
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viscous diffusion. Hence, the difference in azimuthal velocity between the 
interior fluid and the top and bottom boundaries will be proportional to the 
radius but there will be an abrupt drop to zero at  the cylindrical wall. The 
additional effects of the cylindrical wall serve to complicate the problem. In 
order to avoid these complications for the time being we treat the two-dimensional 
spin-up problem for the case where the top and bottom boundaries in the range 
0 < x < 1 are impulsively given the velocity ~ - e ( Z - l ) ~ ,  a 3 1, at t = 0. We 
imagine that this velocity pattern is anti-symmetric about x = 0 and x = & N 
(N = 1,2 ,3 ,  . . .). Thus we avoid the additional effects of the side boundaries and 
concentrate only on the effect of the abrupt change in the velocity profile. 

The mathematical problem can be solved by imagining that the boundaries 
are fixed and the interior fluid initially has the velocity - x + e(X-l)a in the range 
0 < x < 1. It is more convenient to treat the cylindrical problem in this fashion 
and we therefore solve the present problem in the same way. In  addition to (2.23) 

(3.13) 
we have w 0 -  - -x+e(Z-l)a at t = 0, 
and the boundary conditions 

u = w = w = 0  at x =  f1. (3.14) 

The solution is obtained by a straightforward procedure and the pertinent 
results for our discussion are the zonal velocity, 

2a2 ( - )msin mnx cosh Bmnz 
2) - - x + e ( ~ - 1 ) a + -  -- (ecAmt- l ) ,  (3.15) 

n m=l m(a2+m2n2) coshBmn 0 -  

and the stream function $ for the (a1, wl) field, 

e-Am t ,  (3.16) 
a2 ( - )m sinmnx sinh Bmnz 
n m=l  m(a2 +m2n2) sinh Bmn $ = -  r, 

where 
Bmn 

tanh Bmn * 
Am = (3.17) 

This solution involves an error of e-a in the value of wo at x = 0 but since we take 
a B 1 the error is negligible. 

In figure 2 (a)  we show - wo at t = 0 for the range 0 < x 6 1 as given by (3.13) 
with a = 100. This profile is linear in x with an abrupt decrease to zero near x = 1. 
Also shown in figure 2 (a)  is the - vo 'profile for B = 0 (a homogeneous fluid) at  
t = 1, i.e. after a time interval corresponding to a spin-up time for a homogeneous 
fluid. We observe that - wo keeps the same spatial structure but the amplitude 
is decreased by the factor e-l. 

Profiles of - wo for a stratified fluid with B = 1 are shown in figure 2 ( b ) .  At 
t = 1 the profile at  the middle level, x = 0, shows little change from the original 
profile. As we noted earlier, at  the middle level the larger scales are affected 
more strongly than the smaller scales by the viscous processes in the Ekman 
layers. The originally linear part of the -wo profle is now slightly concave 
because at mid-level the largest effect of spin-up comes from the largest mode, 
which vanishes at  x = 0 , l  and has a maximum in the middle. Hence, relative to 
the original velocity profile the strongest spin-up is manifested at x z +. The 



590 G. Buzyna and CT. Veronis 

region of abrupt variation near x = 1 is essentially unaffected by the spin-up 
process because the scale of variation is small and for these scales the effects of 
the Ekman layers are confined to regions closer to the top and bottom boundaries. 

We note from figure 2 ( b )  that at  x = - 1, i.e. just outside the Ekman layer 
near the bottom boundary, the fluid is nearly completely spun up at t = 1. At 
this level all scales are affected by the spin-up process. Furthermore, as we noted 
earlier, the smaller scales are spun up in a much shorter time than the larger 
scales. Hence, the small-scale structure of the original wo profile is no longer 
present and wo is practically symmetric about x = 4. 

X 2 

FIGURE 2. Zonal velocity, w,, with spatially non-uniform forcing 
(a = 100) for (a)  B = 0 and (a) B = 1. 

Contours of the stream function for the meridional circulation (the (ul, wl) 
field) are shown in figures 3 and 4 for the cases B = 0 and B = 1, respectively. 
In  figure 3 the flow for the homogeneous fluid at t = 0 corresponds to the circu- 
lation which is set up after the Ekman layer has been established. The streamline 
pattern shows the fluid rising in the narrow boundary region and falling in the 
broad interior region. At t = 1 the flow pattern has the same spatial form but 
the amplitude of $ is decreased to e-l of its original value. 

The remarkable change in the meriodional circulation wrought by the strati- 
fication (B = 1) is evident in figure 4. Initially the circulation set up by the 
Ekman layer shows a concentration of streamlines toward x = 1 in the vicinity 
of the boundary but higher up the flow is more nearly symmetric about x = fr. 
This tendency toward symmetry again reflects the penetration of only the 
larger scales to the middle levels of the fluid. At t = 1 the asymmetry of the 
streamline pattern near z = - 1 has largely vanished and the entire pattern now 
shows a nearly symmetrical structure about x = Q. The dashed curve in each 
figure marks the transition region from upward to downward flow. The stream 
function in figure 4 has a much smaller amplitude than that of figure 3. This 
reflects the faster spin-up time for the stratified fluid. 
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X 

FIGURE 3. Stream function, 11, with spatially non-uniform forcing (a = 100) for B = 0 
a t  t = 0 and t = 1. The stream function a t  t = 1 (the value in parentheses) is decreased 
to 1/e of its original value. 

X 

F I G ~ E  4. Stream function, $, with spatially non-uniform forcing 
(a = 100) for B = 1 a t  (a) 5 = 0 and ( b )  t = 1. 

4. Experimental apparatus and procedure 
Experiments were performed on a rotating table driven by a synchronous 

motor through a Graham variable speed transmission. The fractional deviation 
of the rotation rate was less than f 4 x 10-4 on the time scale of the experiment, 
and this variation was primarily due to the imperfections in the timing belt and 
geared pulley combination which couples the table to the transmission. The axis 
of rotation was aligned within 5 sec of arc with the vertical (gravitational field). 
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The working fluid, distilled water stratified with NaC1, was contained in a 
clear 0.64 em thick Plexiglas cylinder, 19.0 em in diameter and 12-1 em in height, 
with a rigid 0.64 em top cover. The test container was placed on a 2-5 em thick 
piece of Phenolic and covered with another 0.64 em thick Plexiglas cylinder so 
that a 0.64 em air gap separated the two containers at  the walls and top surface. 
The second container and the air gap were used to dampen the room temperature 
fluctuations and drift during the course of the experiment. The flow in the con- 
tainer was photographed with a camera mounted on the rotating table above the 
container and coincident with the axis of rotation. Photographs were taken at  
selected intervals and the time was recorded by a stop watch (Q sec resolution) 
mounted adjacent to the container. 

The stratified fluid was prepared by the ‘slip-under method’ (Fortuin 1960), 
used in the preparation of density gradient columns. In  brief, an open tube is 
connected to the bottom of two tanks, one with pure water and the other with 
salt water of desired density. As the pure water tank is slowly drained, salt water 
enters and is mixed with the fresher water with the aid of a stirrer. Thus, the fluid 
in the mixing tank, originally containing pure water, becomes saltier with time. 
The drained fluid is fed into the test container through a hole in the bottom edge 
of the container; the incoming denser fluid displaces the less dense fluid intro- 
duced previously. In this way, a nearly linear density gradient is obtained. The 
linearity of the gradient depends on the rate of flow from the mixing tank and the 
thoroughness of the mixing process. TWO to four hours are generally required to 
successfully complete the filling of the test container. The container was filled 
while the turn-table was rotating but the supply tanks were in the laboratory 
frame. 

The density gradient in the container was inferred from the density of pure 
water at  the top, the positions of calibrated density floats in the interior of the 
fluid, and the density at  the bottom of the container. The latter was assumed 
to be the same as the density of the fluid remaining in the mixing tank at  the 
completion of the filling process. The density of the fluid in the mixing tank was 
read with a hydrometer which had been calibrated with solutions of known 
density. The calibrated density floats, approximately 4 mm in diameter, were 
introduced into the fluid at the conclusion of the spin-up experiment and the 
vertical position was read with a cathetometer while the container was still 
rotating at  the final rotation rate. A representative density gradient is shown in 
figure 5 (experiment SS14). The straight line represents the gradients used in the 
calculations. 

After the container is filled with the stratified fluid, approximately 2 h are 
required before the experiment can begin. As a consequence of the filling proce- 
dure, a strong asymmetric flow is present in the container and the fluid must be 
allowed to reach a state of rigid-body rotation. 

Observations and measurements of the spin-up flow field were made by 
photographically following a neutrally buoyant dyed parcel of fluid. The dye was 
produced by the Thymol Blue pH indicator technique described by Baker (1966). 
The method consists of placing h e  wire electrodes in the pH indicator solution 
which has been titrated to the end point. An electric current is allowed to flow 
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momentarily between the electrodes. The pH of the solution near the negative 
electrode changes and the colour of the solution in the immediate vicinity of the 
electrode changes accordingly. The resulting dyed fluid is neutrally buoyant. 

In  our experiments, platinum+ 10 % irridium wires 0-005 cm in diameter 
served as the negative electrodes and were strung across the diameter of the 
container. The positive electrode was a short stub, approximately one centi- 
metre in length, of the same wire and located near the negative electrodes. The 
arrangement of using a short stub of wire for the positive electrode avoids the 
formation of bubbles and irregular sheets of dye about the negative electrodes in 
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FIGURE 5. A representative density gradient, B = 0.708 (experiment SS 14). 

the strongly conducting fluid. After a solid cylinder of dye was formed the rota- 
tion of the table was changed and the first photograph taken at this time, i.e. 
while the did controlling the output rotation of the Graham transmission was 
being changed. The time taken to change the rotation was approximately one 
second. The centre of a dye line a t  a given radius was taken as the point repre- 
senting the parcel of fluid being followed. The rate of change of the angular posi- 
tion of the marked fluid as a function of time represents the raw data of the experi- 
ment. 

The meridional flow field was observed by viewing the vertical distortion of the 
dye lines, i.e. by viewing the container from the side. The cylindrical container 
was placed in a square Plexiglas container and the space between containers was 
Bled with water. This arrangement permits one to view the edge of the cylindrical 
container without distortion. The camera was mounted in the plane of the table. 
Two wires were used at  0.5 and 1.0 cm above the bottom boundary. The plane of 
the wires was inclined at  approximately 30' to the plane of the camera. 

38 F L M  50 
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Several stratified spin-up experiments were also conducted by using neutrally 
buoyant spheres. The results of these experiments were essentially similar to 
those obtained with the wire technique. At mid-level the results of the two 
methods could not be distinguished quantitatively. The neutrally buoyant 
float method, however, introduces more uncertainties near the horizontal boun- 
daries and in general provides less information per experiment than does the pH 
indicator technique. For this reason, the neutrally buoyant float experiments 
were not pursued, 

5. Qualitative discussion of the experimental results 
This section contains a description of those features of the stratified spin-up 

experiments that could be observed by the present techniques. We shall refer to 
specific experiments to illustrate the particular phenomenon under discussion. 
The data for the different experiments are summarized in table 1. 

p bottom 
‘h 

As1 - Experiment - P  top n 
number B (g/cmS) (rad/sec) n a (set) 

SS 14 0.708 0-0303 1.101 0-0134 1.57 58.0 
SS 24 0.456 0.0454 2.034 0.0104 1.49 44-8 
SS 27 1.44 0.130 1.099 0-0116 1-57 56.0 
5531 0.684 0.0287 1.110 0.0209 1-57 57.7 

TABLE 1. Summary of experimental parameters 

.Rigid-body rotation 
Spin-up is defined as the process of fluid adjustment which occurs when the 
rotation rate of the container is increased abruptly from one value to a slightly 
larger value. The fluid is assumed to be in a state of a rigid-body rotation prior to 
spin-up. Such a state is not possible for a rotating stratified fluid, however, be- 
cause the pressure surfaces that accompany a state of rigid-body rotation are 
paraboloids of revolution and the density surfaces cannot be parallel to the 
pressure surfaces because of diffusive processes. Hence, a relative flow, referred 
to as the Sweet-Eddington (SE) flow, will exist. In  order to determine the 
intensity of the SE flow the following procedure was adopted. 

Prior to spin-up the system was observed, via dye lines in the fluid, over a 
period of time comparable to the duration of the spin-up experiment which was to 
follow. When the initial rotation rate was no larger than 1 rad/sec, the aximuthal 
displacement of the dye line (observed to be a maximum near mid-radius) was 
less than 1 to 2 degrees at  z = - 0-8 and practically not noticeable at  z = 0. At 
rotation rates of 2 rad/sec and higher the azimuthal displacement of the dye 
line in the SE flow was not negligible compared with the total displacement of the 
line during the spin-up experiment. For example, the SE displacement at the 
level z = - 0.84 for experiment SS 24 (performed at 2 radlsec) prior to spin-up 
is shown in figure 6 along with the displacement observed during the actual spin- 
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up experiment which followed. The SE displacement is largest near the bottom 
boundary. At mid-level the displacement is in the same direction but of consider- 
ably smaller magnitude (of the order of one degree at the end of three minutes) 
and for this reason is not shown. Experiments at  rotation rates of 3 rad/sec were 
abandoned due to the strong SE flow. Although SE flow is always present to 
some extent in the experiments, we shall use the term ' rigid-body rotation' as the 
flow in the absence of spin-up. 
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FIGURE 6. The azimuthal displacement field as a function of time for B = 0.456 and 
An/R = 0.010. 0, A, experiment (SS24) at z = - 0.055 and ria = 0.493, and z = - 0.843 
and r/a = 0.515, respectively; , Walk (1969); - - , Holton (1965); 
0, experimental measurement of the Sweet-Eddington flow a t  z = - 0.843, prior t o  the 
change in rotation rate; +, an approximation of the displacement field a t  z = -0.843 
in the absence of the Sweet-Eddington flow. 

Spin-up time at a point in the $%id 
After the rotation rate of the container is increased abruptly, the fluid velocity 
at each point will change from its initial value to a final value. From the data 
showing azimuthal displacement A8 'us. time t at given values of r and z (two of 
these are shown in figure 6) the velocity of the fluid at any time can be estimated 
from the slope of the 'best' curve through the experimental points. The initial 
velocity is given by the change in the rotation rate (the slope of the curve at  the 
initial time) and the final velocity is obtained from the slope of the curve through 
the last few points. Because the curve is monotonic there is one value of time 

38-2 



596 G. Buzyna and G. Veronis 

T when the velocity differences between t = 0 and t = r is l / e  of the differences 
between initial and final velocities. This is defined as the spin-up time. The spin- 
up time was determined for experiments with 0.4 < B < 1.4, corresponding to 
rotation rates of 1 to 2 radlsec and total density differences between top and 
bottom of 3 % to 12 %. The Ekman number for these experiments was between 

and 3 x lo4 while the Rossby number, the measure of the change in rotation 
rate, was kept between 0.01 and 0.015. Determinations of T as a function of B 
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FIGURE 7. The ratio of stratified to homogeneous spin-up times, T/T~, as a function of the 
parameter B with a = 1.5 to 1.6, and r/a = 0.5. 0, experiment; - , Walk (1969); 
- - ~  , Holton (1965). (a)  z = 0, and ( b )  z = -0.8. 
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Spin-up of a strati$ed JEuid 597 

near mid-level and near the bottom boundary are shown in figure 7. The error 
bars over the experimental points indicate the uncertainty in selecting the point 
at which the slope corresponds to the velocity characteristics of the spin-up time. 

The results in figure 7 demonstrate the qualitative behaviour predicted by the 
simple harmonic solution, equation (3.12); i.e. 7 is shorter for larger B and 
approaches the spin-up time for a homogeneous fluid as B -+ 0. 

Azimuthal displacement us. radius and time 
Measurements of azimuthal displacement (A@ as a function of radius r/a are 
shown in figures 8 (a) and 8 ( b )  for experiment SS 14 at 32.8 and 126.4 see respec- 
tively after the initiation of the spin-up process. Error bars over the symbols 
denoting experimental measurements represent the arc subtended by the marked 
fluid and the maximum error in reading the displacement from the photographs. 

rla 
FIGURE 8. The azimuthal displacement field as a function of radius, r/u, for B = 0.708 
and A!2/!2 = 0.013. 0, A, experiment (SS 14) at z = - 0-005 and z = - 0.834, respectively; 

, Walh (1969) ; - - , Holton (1965). (a) After 32.8 sec. The effects of 
lateral diffusion on Walin's theoretical curves are shown as dashed curves in the region 
0.8 < r/u < 1. (b )  After 126-4 sec. 
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It is evident from these two figures that the A6 us. r curves differ from level to 
level. Hence, the azimuthal flow field can be synthesized from a number of curves 
generatedat different levels. A qualitative pictureof the azimuthal flow field 61 see 
after spin-up for experiment SS 31 can be obtained from dye lines at  four levels 
( z  = -0.005, -0.58, -0.83 and -0.92) and originally generated along the 
diameter shown by the dashed line in figure 9 (plate 1). In  the experiments for 
which quantitative data were taken only two wires, strung perpendicular to 
each other at  two different levels, were used. This arrangement separates the dye 
lines and permits more accurate measurement of displacement. 

The interpretation of the radial behaviour of the azimuthal velocity is facili- 
tated by the solution of the spatially non-uniform forcing example. This example 
is relevant in that the initial velocity in a spin-up experiment is also linear except 
for a small region affected by the wall. At the moment of spin-up and during the 
first few seconds of the flow the dye lines at  all levels appear linear and of the same 
magnitude in angular displacement. In  a, very narrow region near the wall, as the 
fluid moves relative to the container, the dye line is stretched out from its point 
of contact with the wall to the point of tangency with the original straight line. As 
the flow progresses, the narrow diffusive region penetrates deeper into the interior. 
At the same time dye lines at lower levels are retarded as spin-up is achieved. 

The behaviour described above is represented in figure 9, where dye lines at  
four levels are shown. Let us focus particular attention at the two extreme levels 
and view them with the non-uniform forcing solution in mind. The sharp varia- 
tion of the velocity field near the wall is a small-scale phenomenon and we have 
observed in the simple examples that for such small scales the effects of the Ek- 
man layers do not penetrate far from the top or bottom boundaries. Furthermore, 
the smaller scales respond to spin-up in a much shorter time than do the larger 
scales. Hence, the displacements are much smaller a t  the lower level and the 
curvature of the dye line is also less. The larger curvature a t  mid-level reflects the 
smaller effect (particularly with respect to smaller scales) of the spin-up processes 
at  that level. Furthermore, the displacement of the dye at  mid-level is only mildly 
affectedby Ekman layer processeswith the greatest effect in thevicinityof r/a = i. 
Although this effect is present in the photograph, it is more directly observed 
in the displacement us. radius curve of figure 8(b)  for a similar experiment. In 
terms of absolute displacement, (r /a)  A6, the maximum retardation does, indeed, 
take place near r/a = (r/a = 0.5 to 0.6 for experiment SSl4). Retardation 
here is measured relative to the position that the fluid would occupy in the ab- 
sence of spin-up flow. At the time of the photograph, the effect of diffusion has 
penetrated to a point about a third of the radius in from the wall. 

The time dependence of the azimuthal displacement field is also in clear agree- 
ment with the theoretical examples. All experimental results given as a function 
of time demonstrate that the final state of the fluid is not one of rigid-body rota- 
tion, as is the case for a homogeneous fluid, but rather a state of quasi-steady flow 
on the spin-up time scale. When azimuthal displacement is plotted against time, 
figure 10, the experimental measurements show a linear relationship with time 
after several spin-up times, and the slope is non-zero. The initial velocity is 
represented everywhere by the slope ofa line through the origin. 
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The experimental data presented above do not extend beyond approximately 
4minsinceon this timescale the terminalvelocitybecomessteady. However, as one 
continues to observe the flow beyond this time, the displacement with time begins 
to diminish again and rigid-body rotation is achieved within 2-3 h, i.e. after a 
diffusion time. One need not wait beyond 4 min to observe the effects of diffusion, 
however, as the fluid near a wall will sense diffusion at a much earlier time. For 
this reason the experimental displacement-time data is presented at  r/a k &. At 
larger values of r diffusion effects begin to obstruct the pure spin-up response. 

t (seo) 
F I G ~ E  10. The azimuthal displacement field a8 a function of time for B = 0.708 and 
An/n = 0.013. 0, A ,  experiment (8s 14) at z = - 0.005 and r/a = 0.492, and z = - 0.834 
and r/a = 0-515, respectively; ___ , Walin (1969);--- , Holton (1965). 

The behaviour of the azimuthal velocity as a function of stratification and 
height above the bottom boundary is also clearly demonstrated by the dis- 
placementitime data. Fluid spin-up is strongest near the bottom boundary for a 
given stratification. With increasing stratification spin-up is conked to a 
thinner region near the boundary. Hence, the terminal slopes are larger (i.e. 
closer to the initial slope) at mid-level for a given stratification, and the ter- 
minal slopes are also larger for a larger stratification at a given level. Figures 6, 
10 and 11 show the effect of increased stratification. Only the layer of fluid above 
the Ekman layer reaches rigid-body rotation. Although measurement of the flow 
at this level was not made, this behaviour was easily observed with dye. Crystals 
of dye were dropped into the container prior to  spin-up so that a trail of dye 
extended from the top of the container to the crystal at  the bottom. Just after 
the initial instant the entire trail of dye was observed to move. After a few 
minutes of the flow, however, the dyed fluid near the bottom of the container 
came to relative rest while the fluid above continued to move. The velocity of the 
moving fluid increased upward to the mid-level of the tank. 
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t (sec) 

FIGURE 11. The azimuthal displacement field as a function of time for B = 1.44 and 
AQ/Q = 0.012. 0, A, experiment (SS 27) a t  z = - 0.005 and r/a = 0.492, and z = - 0.834 
and r/a = 0.515, respectively; --, Walin (1969) ; - - ~ , Holton (1965). 

Observations of rneridional $ow 
Observations of the gross featnres of meridional flow were made for both homo- 
geneous and stratified fluids by viewing the vertical displacement of a horizontal 
dye line from the side of the container. The results presented for homogeneous 
fluids are intended as an aid for the qualitative interpretation of the corresponding 
stratified flow. 

As mentioned in $ 4  side photographs were taken of dye lines which were 
originally generated along a line inclined 30° to the normal plane of view of the 
camera. As time goes on, the dye lines rotate azimuthally. Hence, at  some time a 
dye line in the interior of the fluid will be normal to the line of sight and at  a still 
later time it will be parallel to the line of sight (and therefore appear as a point). 
The portion of the dye line that lies closer to the side wall will be stretched 
azimuthally from the point of contact with the wall to the point of tangency with 
the interior dye line (see figure 9 (plate 1) for a top view). 

Side photographs of a homogeneous spin-up experiment are shown in figure 
l 2 (a )  (plate 2). The photographs show the position of the dye at  the initial 
instant and 63 sec after spin-up. The spin-up time 7h is 62 sec, the final rotation 
rate 1-11 rad/sec, and the change in the rotation rate 1.9%. This record will 
serve as a basis for evaluating the corresponding stratified spin-up record and is 
therefore considered first. Note that the fluid to the right of the rotation axis 
is flowing out of the plane of the photograph and to the left into the plane of the 
photograph, and that the original position of the dye line is at an angle to the line 
of sight, hence the difference in appearance of the dye near the walls. The sharp 
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curvature of the dye line near the walls represents the upward flow in the side- 
wall boundary layers. Slight downward motion can also be detected in the interior 
of the fluid. 

Side photographs of the corresponding stratified spin-up with B = 0.79 are 
shown in figure l2(b).  The initial position of the dye and the position 57 sec 
after spin-up are shown. The dimensionless stratified spin-up time r,/rh is 
approximately 0.59 at the level z = - 0.8, the rotation rate is 1.10 rad/sec and 
the change in rotation rate is 1-5 yo. The strong upward motion near the wall 
detected in the corresponding homogeneous example is absent here. Although 
some vertical motion is present, it appears more evenly distributed along the 
particular level without sharp or distinct vertical motions. This observation 
confirms Pedlosky’s conclusions that the radial transport of the Ekman layers 
at the horizontal boundaries cannot be accepted by side-wall boundary layers of 
the type encountered in a homogeneous fluid. The side-wall boundary layer is sim- 
ply an O(E4) layer which diffuses the azimuthalvelocity of the wall into the fluid. 

The meridional circulation can be intensified by increasing the rotation rate 
of the container by a larger amount. Side photographs of homogeneous spin-up 
with 7.3 % change in rotation rate are shown in figure 13 (a) (plate 3). Photo- 
graphs show dye positions at 0, 7 and 25 sec after the change in rotation rate. 
The spin-up time is 60 sec and the final rotation rate is 1-17 rad/sec. 

In  the interest of clarity, only the very early times of the flow are shown 
because the dye experiences large displacements due to the large initial velocity 
and interpretation at later times becomes difficult without simultaneous records 
of the flow from above. The stronger flow is evident here, in terms of the displace- 
ment both near the wall and in the interior. In  the photograph taken 25 sec 
after spin-up, the dye in the interior region of the fluid is parallel with the line of 
sight. (The curved lines of dye in figure 13 (a )  are contained in the side boundary 
layer.) Before one spin-up time the lower dye line becomes absorbed in the Ekman 
layer where the horizontal flow is directed toward the wall. 

The corresponding stratified spin-up was performed with the same fluid used 
above and approximately 1 h after the 1.5y0 spin-up experiment. One hour 
between the consecutive experiments is sufficient for the flow field resulting 
from the 1.5 yo spin-up to become negligible compared with the flow induced by a 
stronger spin-up. The increase in the rotation rate here is 11 yo and the side photo- 
graphs of the flow at 0 , 4  and 17 sec after the change in rotation rate are shown in 
figure 13(b). The photograph after 17 sec shows the dye lines in the interior 
approximately parallel with the line of sight. The dye lines in this photograph 
have been touchedup to make the dye appear darker. 

The downward flow of fluid in the interior region appears similar in both the 
stratified and homogeneous spin-up flow; the character of the flow near the wall, 
however, once again appears significantly different. The structure in the side- 
wall boundary layer demonstrated by the homogeneous flow is not observed in 
the stratified flow. The stratified fluid shows a smaller but sharper rise next to the 
wall and a more gradual blending of the dye into the interior region than that 
observed in the homogeneous spin-up flow. 

The difference in the magnitude of the actual vertical displacement of the dye 
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between the homogeneous and stratified examples is not immediately apparent 
owing to the appreciable difference in the change in rotationrates. On close inspec- 
tion of the photograph a t  17 sec, however, one can detect that the lower dye 
line has reached the bottom boundary and that some of the dye is being carried 
laterally by the Ekman boundary layer toward the side wall, while in the corre- 
sponding homogeneous photograph after 25 sec the lower dye line in the interior 
had not yet reached the bottom boundary. The above conclusion is further 
substantiated by photographs at later times not shown here. The stronger (1 1 yo) 
stratified spin-up flow example shows a stronger downward flow in the interior 
and a weaker but broader flow near the wall compared with the weaker (7.3 yo) 
homogeneous spin-up flow example. It should be noted, however, that in the 
stratified spin-up experiments a, large change in rotation rate, of the order of 10 yo 
and larger, creates a weak instability in the Ekman boundary layer near the wall 
of the container, Instabilities are not observed in stratified spin-up experiments 
where the change in rotation rate is of the order of one per cent. 

6. Comparison between theory and experiment 
We shall now compare quantitative experimental results with the theoretical 

solutions to the problem by Holton (1965) and Walin (1969). Results of Sakurai’s 
solution are not presented separately since they are identical to Walin’s. 
Holton’s theory is based on perfectly conducting side-wall boundaries. However, 
we include the comparison, because his experiments, used to compare with his 
theory, correspond to ours. 

Consider first the azimuthal displacement as a function of time. Experimental 
results at  mid-level and mid-radius for different values of B are shown in figures 
6, 10 and 11 along with the theoretical predictions of Walin and Holton. Walin’s 
displacement values lie consistently above Holton’s and generally closer to the 
experimental values. With B = 0.71, figure 10, the agreement between theory 
and experiment is remarkable. At a lower value of B, figure 6, the experimental 
measurements tend to become larger than the theoretical predictions at larger 
times. In  figure 11, the experimental results fall approximately between the 
predicted displacements of the two theories. Disagreement between theory and 
experiment for this larger value of B is too large to be easily explained by ex- 
perimental error. The more important experimental errors will be discussed in 
detail below. Here we mention only that errors due to wire drag and the nature 
of the response of the rotating table to an imposed change in the motor speed 
tend to reduce the experimental displacements by 3 % to 5 %. 

Measurements made closer to the bottom boundary ( x  = -0.83) show 
consistently smaller values than those predicted by theory. In  both figures 10 
and 11 there is a significant difference between theory and experiment and again 
the departure is too large to be attributed to experimental error. For small B, 
figure 6, the raw experimental points (triangles) seem to correspond very well to 
Walin’s predicted values, but, when the Sweet-Eddington circulation is sub- 
tracted, the resulting values (crosses) show a departure from theory of about 
the same magnitude as in the other two experiments. 
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If we make use of the knowledge gained from the simple models in $ 3, we can 
interpret the quantitative results as follows. At mid-level and mid-radius, 
effects from only the larger scales will manifest themselves. On the other hand, 
the most pronounced effect of spin-up occurs closer to the top and bottom 
boundaries and the smaller-scale processes are confined to these regions. Hence, 
it appears that Walii’s theoretical analysis yields a more accurate description for 
the larger-scale motions than it does for the smaller-scale ones. It also tends to 
underestimate spin-up in the region where it is most concentrated. These con- 
clusions are consistent with the approximations made in the theory. The rela- 
tively small scales in the region near the outer edge of the Ekman layer where the 
fluid must flow upward and radially inward cannot be treated analytically be- 
cause non-linear effects must be important there. Hence, we can conclude that 
the processes which take place in the corner region must enhance the spin-up. 
Although based on indirect evidence, this conclusion should be a useful guide in 
treating the more complete problem. 

The spin-up times can be determined from the curves showing displacement us. 
time. These spin-up times are shown in figures 7 (a) and 7 (a) for the two levels 
z = 0 and z = - 0.8. Holton’s theoretical values are much larger than the ex- 
perimental ones. Walin’s yield better agreement but it is interesting to note that 
his values at mid-level are larger than the experimental ones by an amount in 
excess of the reading error of the slopes of the curves. At the lower level the ex- 
perimentally determined spin-up times agree very well with Walin’s results. 
Hence, we are confronted with the paradox that theory and experiment yield 
a detailed time behaviour which is better a t  mid-level than in regions near the 
Ekman layer but the integrated result, represented as spin-up time, shows better 
agreement at  the lower level. It is possible that the experimentally measured 
spin-up times are in error by an amount greater than indicated since small 
errors in displacement can have a corresponding large effect on the slope of the 
curve, particularly since a relatively small number of points defmes the curve 
in the vicinity of the spin-up time. In  general, spin-up time measurements are 
less reliable than the displacement measurements. It is noteworthy, however, 
that at mid-level the experimental measurements consistently fall below the 
theoretical prediction. 

An alternative explanation for the above paradox may be based on the con- 
sequence of molecular diffusion of salt at the horizontal boundaries. During the 
several hours before spin-up, salt diffusion decreased the density gradient near 
the boundaries. This behaviour is described in greater detail in $7. The weaker 
stratification near the boundaries may permit deeper penetration of the effects 
of the boundaries into the fluid, and hence produce a longer spin-up time and 
shorter displacement relative to the situation at mid-level where the density 
gradient has been undisturbed by diffusion. Consequently, the agreement 
in spin-up time between experiment and Walin’s theory above the Ekman 
layer may be fortuitous! In  the absence of distortion a t  this level, the spin-up 
time may be shorter and displacement larger. Unfortunately, the diffusion 
process and the long time required before an experiment can begin is inherent 
in the experimental method and cannot be realistically eliminated. 
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The radial variation of the azimuthal displacement is discussed only for the 
representative experiment at l3 = 0-71. The behaviour for other values of B is 
essentially the same and will not add substantially to the present discussion. 
The displacement field at  two levels is shown in figures 8(a )  and 8(b) ,  32.8 sec 
and 126.4 sec, respectively, after spin-up. It is evident from these curves that 
agreement between theory and experiment is best at  mid-radius. The results 
presented in figure 10 showing temporal variation of azimuthal displacement 
reflect this fact. The large discrepancy between theory and measurements near 
the wall can be eliminated by including the effects of diffusion of momentum 
from the side wall. In figure 8(a)  we have included the term vdf) from (2.18) to 
show the improvement that results near the side wall. 

There is also disagreement between theory and experiment for small values 
of r at mid-level. Part of this discrepancy may be due to experimental errors 
because wire drag is more significant near r = 0. Displacement readings are 
also less reliable there as indicated by the large error bars. However, the 
divergence of measurements from theory is not as pronounced a t  the lower level. 
Since the region near r = 0 is of small scale, perhaps this behaviour is another 
manifestation of the inadequacy of the theory in representing small-scale effects. 

Experimental investigation of the stratified spin-up problem has also been 
conducted by Holton (1965), McDonald & Dicke (1967) and Modisette & Novotny 
(1969). Holton’s experiments demonstrate the essential features of the spin-up 
flow predicted by theory. His quantitative agreement with theory, however, was 
fortuitous since his side-wall boundary condition is inappropriate to his experi- 
mental condition and the experiments were coarse in nature. 

McDonald & Dicke conducted both homogeneous and stratified spin-up 
experiments and observed the damping of the azimuthal motion of the fluid by 
the use of free surface floats. The observations were made over a long period (20 
min) and at  large intervals (one minute) of time. Based on the great difference 
in the damping rates they were led to conclude that ‘the occurrence of Ekman 
pumping and the ensuing “spin-down” in a fluid can indeed be inhibited or 
eliminated by a sufficient density gradient in the fluid’. Their stratified experi- 
ment is equivalent to our experiment SS27 ( B  = 1.44) a t  mid-level; the aspect 
ratios are nearly the same for both experiments. They interpret spin-down of a 
stratified fluid as an attainment of a state of no motion relative to the container, 
as is the case in homogeneous fluid spin-down, and have designed their experi- 
ment accordingly. We see from the results of experiment SS27 at mid-level 
(figure 11) that the effect of the meridional circulation (Ekman pumping) is 
slight in its penetration and short in duration. The spin-up time, in terms of our 
dekition, is approximately 15 sec. Thus McDonald & Dicke could not easily 
sense the spin-up process with a surface float on their experimental time resolu- 
tion and scale. They were observing primarily the viscous diffusion effects, hence 
their conclusion regarding Ekman pumping in the presence of stratification. 

Modisette & Novotny repeated and extended the experiments of McDonald & 
Dicke. They interpreted McDonald & Dicke’s conclusions to mean that con- 
vective spin-dom can be prevented by a density gradient and they attempted to 
find a transition between a convective spin-down typical of a homogeneous fluid 
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and a purely viscous ‘spin-down’. Experiments were extended by reducing the 
height of the stratified fluid but maintaining the same density difference across 
the boundaries. In terms of our parameters, they performed a series of experi- 
ments with decreasing values of Bla, with a change in the aspect ratio a by a 
factor of 10. In  effect they observed the mid-level over a range between experi- 
ment SS27, Bla = 0.92, and experiment SS24, Bla = 0.31. They interpreted 
the decreasing displacement of the surface float with decreasing B/a  as evidence 
of a transition. In  actuality, they observed the deeper penetration of the meri- 
dional circulation as a result of the decreasing value of Bla rather than a transi- 
tion between two distinct mechanisms. Their displacement curves a t  low values 
of Bla show peculiar curvatures which most probably reflect the coarse nature 
of their experimental technique. 

We have also attempted free-surface experiments similar to those described 
above. These experiments, however, proved unsuccessful. Experimental measure- 
ments obtained with free surface floats and internal markers were in poor and 
often inconsistent agreement with theory. It was later discovered that the free 
surface did not behave as a truly free surface in that it acquired rigid surface 
characteristics. Such characteristics of a free surface are not uncommon and 
are usually aresult of impurities in the fluid a t  the free surface. 

7. Experimental errors 
An overall effect of experimental errors such as the uncertainty in time 

measurement, position of the dye, drag due to  wires, and the nature of the turn- 
table response to a change in the rotation rate can be demonstrated by an 
application of the experimental method to a well-understood flow, namely the 
spin-up of a homogeneous fluid. A number of homogeneous spin-up experiments 
were conducted to evaluate and r e h e  the experimental method. 

Greenspan & Howard (1963) present a thorough theoretical analysis of the 
homogeneous spin-up problem as well as experimental results in excellent 
agreement with their theory. Their results for the azimuthal displacement may 
be conveniently written in the form 

0-8, = A!JT~ (e- t /Th  - l), 

where8, is the initial position of a fluid element, rh is the spin-up time based on 
the final rotation rate and A!J is the change in the rotation rate. The result of a 
representative experiment conducted with a rigid top surface at  a rotation rate of 
1.1 rad/sec with a change of rotation rate of 1.3 yo and a calculated spin-up time 
of 61.8 sec is shown in figure 14. Relative displacement is plotted as a function of 
time in the form e-t/Th. In  this form, the experimental points should fall on a 
straight line. Greenspan & Howard’s result is given by the solid line and the 
experimental results obtained at two levels, z = -0.26 and z = -0.92, are 
represented by the dashed line. The error bars over the experimental points 
indicate the thickness of the dye line at  T = 0-5 and represent approximately 
the extent of the reading error. The measurements at the two levels agree with 
each other within experimental error, as they should. The experimental straight 
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line is determined by the experimental data through twice the spin-up time. 
At larger times, the experimental pointsfall below the straight line. This departure 
is due to thermal currents which are driven by small temperature differences 
between the room and the fluid in the container rather than the spin-up process 
itself. For small temperature differences these extraneous flows are weak and 
noticeable only when the flow due to spin-up approaches rigid-body rotation at  
the new rotation rate. Greenspan & Howard’s experiments do not show such 
an extraneous flow primarily because of the large imposed change in the rotation 
rate, approximately 15%, and because of the relatively short time, approxi- 
mately twice the spin-up time, that the surface float was followed. With such 
large initial velocity, the velocity after two spin-up times is still large enough 
so that even a moderate thermal effect may not be noticeable. 

+7n 

FIGURE 14. The azimuthal displacement field as a function of time for a homogeneous 
fluid at R = 1.1 red/sec and AR/Q = 0-013 with T,, = 61-8 sec. 0, A ,  experiment at  
z = -0.92 and z = -0.26, respectively; - , Greenspan I% Howard (1963). 

The experimental spin-up time calculated from the intercept is 59.9 sec and is 
approximately 3 % lower than the theoretical prediction. In  general, the results 
obtained from a number of homogeneous spin-up experiments agree with the 
theoretical calculations with an error of 5 % or less. The experimental spin-up 
time and displacement, however, generdly fall below their theoretical values. 

Stratified experiments contain the errors described above as well as additional 
errors due to the uncertainty in the density gradient, deviations from a linear 
gradient, and the presence of the Sweet-Eddington flow. The error in the density 
gradient, based on the different possible slopes through the positions of the 
floats and the limiting densities, is 2 to 4%. The corresponding effect on the 
angular displacement is between 1 and 2 %. 

Significant deviations from a linear density gradient occur only near the 
horizontal boundaries, and are due to molecular diffusion of salt. Although the 
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diffusion process is slow, the 4-5 h from the beginning of the filling process to the 
time of the experiment are sufficient to create noticeable departure. The dashed 
curve in figure 5 represents such a deviation after 4 h. The distortion is more 
representative of the fluid near the top boundary since it is ‘older’ than the fluid 
near the bottom boundary. The effect of the distortion of the density gradient on 
the flow field is difficult to estimate. It is an effect which is not considered in the 
theory and must be kept in mind in a h a 1  evaluation of quantitative differences 
between experiment and theory. 

A study of the effect of the above distortion on the flow field was attempted 
by two experiments described below. 

In  the first experiment, the top centimetre of fluid normally containing the 
largest distortion was eliminated by overfilling the container with an appropriate 
amount of stratified fluid from below. Hence, the density gradient was initially 
‘linear ’. In  the second experiment, constant density layers, Q cm in height, were 
introduced at the top and bottom boundaries; the top layer consisted of pure 
water and the bottom layer was at  the maximum density of the linear gradient. 
Both experiments were conducted under conditions similar to experiment SS 14. 
The results of the two experiments and experiment SS14 were essentially 
the same and could not be effectively distinguished. These experiments confirm 
that there are layers of fluid near the horizontal boundaries where significant 
departure from a linear density gradient can occur. 

Plows extraneous to the spin-up flow occur as a result of thermal effects and the 
Sweet-Eddington flow. Thermal effects of the type noted in the homogeneous 
spin-up experiments do not occur here because large-scale motions due to small 
temperature variations in the fluid are inhibited by the relatively large density 
gradient, However, motion in small-scale cells is still possible. Superimposed 
on the possible weak thermal flow is the Sweet-Eddington flow. The combined 
effect of these two flows is small for experiments conducted at rotation rates 
of 1 rad/sec or less. The resulting angular displacement over the duration of the 
spin-up process is usually less than two degrees, or typically less than 2 % of the 
total angular displacement. 

Errors arising from the approximation inherent in the theory are generally 
less than or of the order of the various errors considered above. For most experi- 
ments the variation of density between the top or bottom boundary and the 
mid-level is from 2 to 6 %, and the terms neglected in the Boussinesq approxima- 
tion are at most 2 to 6 %  of those retained, depending on the extent of the 
stratification. The kinematic viscosity of the fluid also varies from 2 to 6 %  
between the mid-level and a horizontal boundary. Thus the kinematic viscosity 
may be considered constant within the Boussinesq approximation. 

We are grateful to the National Science Foundation which supported this 
research through Grants GA-872, GA-1416 and GA-11410. One of us (G.B.) 
completed the writing of the text with support from ONR contract N00014-68- 
A-0159. 
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FIG~JRE 9. A photograph of the azimuthal displacement field as a function of radius and 
height after 61 sec for B = 0.684 and Asl/sl = 0.021 (experiment SS31) at the levels: 
( 1 )  z = -0.005, (2) z = -0.58, (3) z = - 0.83, and (4) z = - 0.92. Fluid motion is clock- 
wise relative to the containcr. The initial position of the dye lines is represented by the 
dashcd line drawn on the photograph. 
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FIGURE 12. Photographs of the meridional circulation as viewed from the sidc of the 
container. (a )  Homogeneous spin-up, L2 = 1.11 rad/sec, AR/R = 0.019, rh = 62 sec. (b) 
Stratified spin-up, B = 0.79, St = 1-10 rad/see, AL2/Q = 0-015 a t  the levels z = -00-83 
and -0.92, r / rA = 0.59 at z = -0 .83 and ria = 0.5. The dye lines in the photographs 
were touched up to make the dye appear darker. 
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FIGURE 13. Photographs of the meridional circulation as viewed from the side of the 
container. (a )  Homogeneous spin-up, R = 1.17rad/sec, AR/R = 0.073, T~ = 60sec. ( b )  
Stratified spin-up, B = 0.70, R = 1.24 rad/sec, AR/R = 0.11 a t  the levels z = - 0.83 and 
z = - 0.92, TIT,, = 0.65 at  z = - 0.83 and T/U = 0.5. The dye lines in the photographs 
were touched up to make the dye appear darker. 
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